Improving Our Knowledge of Particle Beams in Accelerators with Clever Algorithm and Machine Learning Techniques

Date:

Researchers from the Department of Energy’s SLAC National Accelerator Laboratory, Argonne National Laboratory and the University of Chicago have developed an algorithm that can more accurately predict the shape of particle beams travelling through accelerators. This breakthrough algorithm, which pairs machine-learning techniques with classical beam physics equations, can create a detailed picture of the beam with much less data-crunching than traditional methods.

Whenever an accelerator is operational, billions of electrons are packed together and travel at nearly the speed of light through metal piping. These particular electron bunches, known as particle beams, are used to gain insights into the behavior of molecules, materials and other elements. However, it is difficult to estimate what a particle beam looks like in a single snapshot as it travels throughout an accelerator.

Fortunately, the recent algorithm developed by the research team can enable scientists to generate highly accurate profiles of the beam more reliably. By utilizing knowledge of particle beam dynamics and interpreting experimental data from the Argonne Wakefield Accelerator, the algorithm was able to produce three-dimensional diagrams of the beam using just 10 data points – a feat that could have taken thousands using more traditional methods.

The algorithm represents a substantial shift in the manner of analyzing experimental data from accelerators. Not only does it save a great deal of time and effort, it also offers researchers a better insight into the shape of the particle beam. With further development and refinement, the algorithm could also be used to reconstruct the full 6D phase-space of the beam, adding to its functionality and accuracy.

See also  AI Breakthrough: Translating Animal Communications with Decoding Technology

SLAC National Accelerator Laboratory is a multi-program laboratory operated by Stanford University for the U.S. Department of Energy Office of Basic Energy Sciences and is located in Menlo Park, California. It is the longest operating accelerator in the world and was founded in 1962.

In this current venture, the lead co-author is Ryan Roussel, SLAC accelerator scientist. He is a physicist who specializes in the detailed study of particle beams in accelerators, specifically focusing on the challenges related to measurement, processing, and data analysis at information-rich accelerators. His research also covers the related areas of machine learning, particle-in-cell simulations and controllability.

Frequently Asked Questions (FAQs) Related to the Above News

Please note that the FAQs provided on this page are based on the news article published. While we strive to provide accurate and up-to-date information, it is always recommended to consult relevant authorities or professionals before making any decisions or taking action based on the FAQs or the news article.

Share post:

Subscribe

Popular

More like this
Related

Obama’s Techno-Optimism Shifts as Democrats Navigate Changing Tech Landscape

Explore the evolution of tech policy from Obama's optimism to Harris's vision at the Democratic National Convention. What's next for Democrats in tech?

Tech Evolution: From Obama’s Optimism to Harris’s Vision

Explore the evolution of tech policy from Obama's optimism to Harris's vision at the Democratic National Convention. What's next for Democrats in tech?

Tonix Pharmaceuticals TNXP Shares Fall 14.61% After Q2 Earnings Report

Tonix Pharmaceuticals TNXP shares decline 14.61% post-Q2 earnings report. Evaluate investment strategy based on company updates and market dynamics.

The Future of Good Jobs: Why College Degrees are Essential through 2031

Discover the future of good jobs through 2031 and why college degrees are essential. Learn more about job projections and AI's influence.