Using Machine Learning for Predicting Article Quality Scores for the UK Research Excellence Framework

Date:

National research evaluation initiatives and incentive schemes are often faced with a difficult dilemma: selecting between simplistic quantitative indicators and time-consuming peer/expert review, sometimes supported by bibliometrics. In an effort to provide a third alternative, researchers from the UK sought to determine whether machine learning could be an accurate predictor of article quality using multiple bibliometric and metadata inputs.

The team of researchers, including Mike Thelwall, Kayvan Kousha, Paul Wilson, Meiko Makita, Mahshid Abdoli, Emma Stuart, Jonathan Levitt, Petr Knoth, and Matteo Cancellieri conducted a study to predict article quality scores of 84,966 submissions to the UK Research Excellence Framework 2021. Each submission in their investigation matched a Scopus record from the period between 2014-18 and included a substantial abstract.

The study tested 32 machine learning algorithms, with the Random Forest Classifier and Extreme Gradient Boosting Classifier algorithms ultimately providing the highest accuracy scores. The results were promising for medical and physical sciences Units of Assessment (UoAs), reaching an accuracy rating up to 42% above the baseline of 72%. However, accuracies above the baseline for the social science, mathematics, engineering, arts, and humanities UoAs were much lower or close to zero. Additionally, while increasing accuracy with an active learning strategy and by selecting articles with higher prediction probabilities improved accuracy, there was a substantial reduction in the total number of scores predicted.

The study, published in the journal Quantitative Science Studies, provides an invaluable insight into the potential of machine learning in predicting article quality scores. It is hoped that further research into this application of machine learning will help to optimize existing bibliometric and metadata inputs to reach a higher level of accuracy for predicting article quality scores.

See also  Revolutionizing Business Growth Through AI & Machine Learning

Frequently Asked Questions (FAQs) Related to the Above News

Please note that the FAQs provided on this page are based on the news article published. While we strive to provide accurate and up-to-date information, it is always recommended to consult relevant authorities or professionals before making any decisions or taking action based on the FAQs or the news article.

Share post:

Subscribe

Popular

More like this
Related

Obama’s Techno-Optimism Shifts as Democrats Navigate Changing Tech Landscape

Explore the evolution of tech policy from Obama's optimism to Harris's vision at the Democratic National Convention. What's next for Democrats in tech?

Tech Evolution: From Obama’s Optimism to Harris’s Vision

Explore the evolution of tech policy from Obama's optimism to Harris's vision at the Democratic National Convention. What's next for Democrats in tech?

Tonix Pharmaceuticals TNXP Shares Fall 14.61% After Q2 Earnings Report

Tonix Pharmaceuticals TNXP shares decline 14.61% post-Q2 earnings report. Evaluate investment strategy based on company updates and market dynamics.

The Future of Good Jobs: Why College Degrees are Essential through 2031

Discover the future of good jobs through 2031 and why college degrees are essential. Learn more about job projections and AI's influence.