Neural Network-Based Computing for Machine Learning

Date:

The concept of neuromorphic computing has been around for decades, yet has only recently seen success in realizing the machine’s capabilities to match and even surpass that of the human brain. Neuromorphic computing is a method of processing data that allows machines to imitate the learning process of the brain, by using a combination of analog resistors, nonlinear activation functions, and an array of machine learning algorithms such as back-propagation. Scientists are continually developing various models of spiking neural networks that replicate the thoughts and learning abilities of the human brain.

This presentation by Linnainma (1970) and first implemented by Werbos (1974), looks into the potential of frame-based neuromorphic computing using an array of analog resistors. It will further discuss the tight interplay between materials, algorithms, architecture, and application, in order to successfully materialize this technology. Due to the advancement in computing hardware and the availability of large datasets, machine learning is making successful leaps ahead of traditional models like McCulloch & Pitts’s (1943) simple mathematical neuron model.

The success of Krizhevsky, I. Sutskever and G. Hinton (2012) and others has further highlighted the actual power of machine learning and how the combination of powerful algorithms and advanced computation hardware can push scientific boundaries. Numerous applications of machine learning are now making life better for business owners, with potential implications to every facet of the industry.

Regarding the company, Krizhevsky, I. Sutskever and G. Hinton (2012) are one of the companies leading the charge into machine learning and neuromorphic computing with their advances in powerful algorithms, backed up by some of the top entertainers in the industry. Their emphasis on research and development has opened paths for the advancement of these technologies.

See also  Intel's Cost-Saving Move: Evaluating Database Workloads for Better Efficiency

The individual mentioned in this article is Linnainma (1970), who first implemented the algorithm of back-propagation which still remains the key ingredient of many machine learning algorithms today. Linnainma’s technological advancements has enabled machines to learn quicker and more efficiently, setting the standard of the performance in neuromorphic computing. It was in his works that machine learning set off on its global take-off, with the major propagation in large datasets and advances in computing hardware.

Frequently Asked Questions (FAQs) Related to the Above News

Please note that the FAQs provided on this page are based on the news article published. While we strive to provide accurate and up-to-date information, it is always recommended to consult relevant authorities or professionals before making any decisions or taking action based on the FAQs or the news article.

Share post:

Subscribe

Popular

More like this
Related

Obama’s Techno-Optimism Shifts as Democrats Navigate Changing Tech Landscape

Explore the evolution of tech policy from Obama's optimism to Harris's vision at the Democratic National Convention. What's next for Democrats in tech?

Tech Evolution: From Obama’s Optimism to Harris’s Vision

Explore the evolution of tech policy from Obama's optimism to Harris's vision at the Democratic National Convention. What's next for Democrats in tech?

Tonix Pharmaceuticals TNXP Shares Fall 14.61% After Q2 Earnings Report

Tonix Pharmaceuticals TNXP shares decline 14.61% post-Q2 earnings report. Evaluate investment strategy based on company updates and market dynamics.

The Future of Good Jobs: Why College Degrees are Essential through 2031

Discover the future of good jobs through 2031 and why college degrees are essential. Learn more about job projections and AI's influence.