Machine Learning Models Aid in Identifying Eyes at Risk for Diabetic Retinopathy Progression, Study Shows

Date:

Machine Learning Can Identify Eyes at Risk for Diabetic Retinopathy Progression

Automated machine learning models have shown promise in predicting the progression of diabetic retinopathy (DR) based on ultra-widefield retinal images, according to a recent study published in JAMA Ophthalmology. The findings suggest that this technology could help identify eyes that are at risk for DR progression, potentially leading to improved outcomes and reduced costs.

The study, led by Dr. Paolo S. Silva from Harvard University, involved the analysis of 1,179 deidentified ultra-widefield retinal images with mild or moderate nonproliferative DR (NPDR) over a three-year period. The researchers trained an automated machine learning model to predict the progression of DR using these images.

The results showed that the model had an area under the precision-recall curve of 0.717 for baseline mild NPDR and 0.863 for moderate NPDR. When validated, the model demonstrated a sensitivity of 0.72 and specificity of 0.63 for eyes with mild NPDR, with an overall accuracy of 64.3 percent. For eyes with moderate NPDR, the model achieved a sensitivity of 0.80, specificity of 0.72, and an accuracy of 73.8 percent.

In terms of identifying eyes that progressed two steps or more, the model performed well in the validation set. It successfully detected six out of nine eyes (75 percent) with mild NPDR and 35 out of 41 eyes (85 percent) with moderate NPDR that experienced progression within the follow-up period. Furthermore, the model identified all four eyes with mild NPDR that progressed within six months and one year, as well as eight out of nine (89 percent) with moderate NPDR that progressed within six months and 17 out of 20 (85 percent) that progressed within one year.

See also  Nation-State Hackers and Criminals Embrace AI in Cyberattacks, but US Intelligence Fights Back

The authors of the study emphasize the potential of machine learning algorithms to refine the prediction of disease progression and identify individuals at the highest short-term risk. By doing so, the use of these algorithms could contribute to cost reduction and improve vision-related outcomes for patients with DR.

Nevertheless, it is worth noting that several authors involved in the study disclosed ties to Optos, a company specializing in retinal imaging. This disclosure ensures transparency and acknowledges any potential conflicts of interest.

In conclusion, the findings of this study highlight the potential of machine learning models that utilize ultra-widefield retinal images to predict the progression of diabetic retinopathy. Further research and validation are necessary to confirm the reliability and effectiveness of these models. Ultimately, if successfully implemented, this technology could play a crucial role in identifying patients at a higher risk of DR progression, allowing for early interventions and targeted treatments to preserve vision and prevent complications.

Frequently Asked Questions (FAQs) Related to the Above News

Please note that the FAQs provided on this page are based on the news article published. While we strive to provide accurate and up-to-date information, it is always recommended to consult relevant authorities or professionals before making any decisions or taking action based on the FAQs or the news article.

Kunal Joshi
Kunal Joshi
Meet Kunal, our insightful writer and manager for the Machine Learning category. Kunal's expertise in machine learning algorithms and applications allows him to provide a deep understanding of this dynamic field. Through his articles, he explores the latest trends, algorithms, and real-world applications of machine learning, making it accessible to all.

Share post:

Subscribe

Popular

More like this
Related

Obama’s Techno-Optimism Shifts as Democrats Navigate Changing Tech Landscape

Explore the evolution of tech policy from Obama's optimism to Harris's vision at the Democratic National Convention. What's next for Democrats in tech?

Tech Evolution: From Obama’s Optimism to Harris’s Vision

Explore the evolution of tech policy from Obama's optimism to Harris's vision at the Democratic National Convention. What's next for Democrats in tech?

Tonix Pharmaceuticals TNXP Shares Fall 14.61% After Q2 Earnings Report

Tonix Pharmaceuticals TNXP shares decline 14.61% post-Q2 earnings report. Evaluate investment strategy based on company updates and market dynamics.

The Future of Good Jobs: Why College Degrees are Essential through 2031

Discover the future of good jobs through 2031 and why college degrees are essential. Learn more about job projections and AI's influence.